dy(3x^2+y^2)+dx(x^2+3y^2)=0

Simple and best practice solution for dy(3x^2+y^2)+dx(x^2+3y^2)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for dy(3x^2+y^2)+dx(x^2+3y^2)=0 equation:


Simplifying
dy(3x2 + y2) + dx(x2 + 3y2) = 0
(3x2 * dy + y2 * dy) + dx(x2 + 3y2) = 0
(3dx2y + dy3) + dx(x2 + 3y2) = 0
3dx2y + dy3 + (x2 * dx + 3y2 * dx) = 0

Reorder the terms:
3dx2y + dy3 + (3dxy2 + dx3) = 0
3dx2y + dy3 + (3dxy2 + dx3) = 0

Reorder the terms:
3dxy2 + 3dx2y + dx3 + dy3 = 0

Solving
3dxy2 + 3dx2y + dx3 + dy3 = 0

Solving for variable 'd'.

Move all terms containing d to the left, all other terms to the right.

Factor out the Greatest Common Factor (GCF), 'd'.
d(3xy2 + 3x2y + x3 + y3) = 0

Subproblem 1

Set the factor 'd' equal to zero and attempt to solve: Simplifying d = 0 Solving d = 0 Move all terms containing d to the left, all other terms to the right. Simplifying d = 0

Subproblem 2

Set the factor '(3xy2 + 3x2y + x3 + y3)' equal to zero and attempt to solve: Simplifying 3xy2 + 3x2y + x3 + y3 = 0 Solving 3xy2 + 3x2y + x3 + y3 = 0 Move all terms containing d to the left, all other terms to the right. Add '-3xy2' to each side of the equation. 3xy2 + 3x2y + x3 + -3xy2 + y3 = 0 + -3xy2 Reorder the terms: 3xy2 + -3xy2 + 3x2y + x3 + y3 = 0 + -3xy2 Combine like terms: 3xy2 + -3xy2 = 0 0 + 3x2y + x3 + y3 = 0 + -3xy2 3x2y + x3 + y3 = 0 + -3xy2 Remove the zero: 3x2y + x3 + y3 = -3xy2 Add '-3x2y' to each side of the equation. 3x2y + x3 + -3x2y + y3 = -3xy2 + -3x2y Reorder the terms: 3x2y + -3x2y + x3 + y3 = -3xy2 + -3x2y Combine like terms: 3x2y + -3x2y = 0 0 + x3 + y3 = -3xy2 + -3x2y x3 + y3 = -3xy2 + -3x2y Add '-1x3' to each side of the equation. x3 + -1x3 + y3 = -3xy2 + -3x2y + -1x3 Combine like terms: x3 + -1x3 = 0 0 + y3 = -3xy2 + -3x2y + -1x3 y3 = -3xy2 + -3x2y + -1x3 Add '-1y3' to each side of the equation. y3 + -1y3 = -3xy2 + -3x2y + -1x3 + -1y3 Combine like terms: y3 + -1y3 = 0 0 = -3xy2 + -3x2y + -1x3 + -1y3 Simplifying 0 = -3xy2 + -3x2y + -1x3 + -1y3 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.

Solution

d = {0}

See similar equations:

| 20x^3+85x^2=-60x | | 0.2y/2y | | 2x+x=15+17+1 | | 0,2x-2/5=1 | | -162=-18+12x | | 169-26y^2-13=0 | | X+8=53 | | 2pix=54 | | 4(2x+3)=10 | | 1/3x-3=1/3 | | 5(3y-3)+6=4(6y-5)+4 | | 4(x+2)-2(x+1)= | | 3y-2=7-6y | | 24-5x+57=43-57 | | K=84+-0.8L | | 4n-2=12-2n | | 5(3x+5)=6(5x-3) | | V^2+49= | | 4(4x+3)=10x+5 | | 3a-4=-5a-8 | | 6x-17=9x+11 | | 9x-27=27 | | 26-3+2x(4+3)= | | 5+10x=15x-75 | | -3=x*7 | | 4(-4x-3)+14=-174 | | 28=46-5(-3-4w) | | 13x+27=40 | | 4(-5x-8)+4(-3x-6)=72 | | 5x+3(-2x-3)-1=-22 | | -5x+10+4x+-7+12=21 | | (x+5)+x=50 |

Equations solver categories